Toward a Total Synthesis of Peloruside A: Enantioselective Preparation of the C8−**C19 Region**

LETTERS 2003 Vol. 5, No. 26 ⁴⁹⁵⁹-**⁴⁹⁶¹**

ORGANIC

Richard E. Taylor* and Meizhong Jin

Department of Chemistry and Biochemistry and the Walther Cancer Research Center, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670

taylor.61@nd.edu

Received September 26, 2003

ABSTRACT

An efficient synthetic sequence toward the C8−**C19 region of peloruside A has been developed. The route is highlighted by a selective electrophilic cyclization reaction, a single-step epoxide ring-opening/methylation sequence, and a stereoselective Mukaiyama aldol reaction.**

Peloruside A is a cytotoxic macrolide isolated from a New Zealand sponge, *Mycale hentschi*. ¹ The structure was originally determined by extensive NMR solution studies. More recently, Miller and co-workers reported a study that established peloruside A as a potent cytotoxic agent with epothilone-like microtubule-stabilizing activity.² This report noted interesting structural similarities between the two biologically related polyketides peloruside A and the epothilones (i.e., contiguous hydroxyl, *gem*-dimethyl, carbonyl; C11-C9 peloruside, C3-C5 epothilone). This proposal implied that the C15-stereogenic center of peloruside A was of opposite configuration to the corresponding center in epothilone. More recently, the absolute stereochemistry of natural peloruside A was unambiguously determined to have the identical C15 stereochemistry as epothilone by the De Brabander group through an elegant total synthesis effort.3,4

Our previous experience with the conformation-activity relationships of epothilone⁵ revealed interesting shape and size similarities to peloruside A, and a comparison is shown in Figure 1. Although there is no direct experimental evidence, peloruside A and the epothilones may have

Figure 1. Structural and conformational comparison of peloruside A and epothilone B derived from NMR and computer modeling analysis.

⁽¹⁾ West, L. M.; Northcote, P. T. *J. Org. Chem.* **2000**, *65*, 445. (2) Hood, K. A.; West, L. M.; Rouwe, B.; Northcote, P. T.; Berridge, M. V.; Wakefield, S. J.; Miller, J. H. *Cancer Res.* **2002**, *62*, 3356.

overlapping pharmacophores. Toward our interest in the structural and conformational constraints of peloruside's biological activity, we have begun a program where total synthesis is an initial goal. Herein we report our preliminary efforts toward that aim.

The synthesis commenced with readily available oxazolidinone **1** (Scheme 1), which was stereoselectively alkylated

with BOMCl in the presence of titanium tetrachloride.⁶ After an exchange of protecting groups, the chiral auxiliary was reductively removed with LiBH4. Oxidation of **²** with Dess-Martin periodinane⁷ followed by a Still-Gennari olefination⁸ provided exclusively the (*Z*)-trisubstituted alkene **3**. Then, a two-step conversion of the methyl ester to the corresponding aldehyde allowed for a Brown asymmetric allylation to set the C15 stereogenic center and provide 4 (dr = 97:3, 77%) for two steps).

The nonpolar physical properties of alcohol **4** made purification difficult, a common problem with this allylation method due to reaction byproducts. However, a diastereorandom allylation with inexpensive allylmagnesium bromide followed by chromatographic separation and processing of the undesired $4-15R$ isomer through Mitsunobu inversion⁹ proved to be a practical alternative for large-scale work. As shown in Scheme 2, simple Grignard allylation proceeded in good yield to provide a 1:1 mixture of diastereomers that were easily separable by column chromatography. The twostep conversion of the undesired isomer proceeded efficiently to provide diastereomerically pure **4**-15*S*. The 16,17-(*Z*) olefin geometry was maintained through this sequence as proven by NOE studies (see Supporting Information).

⁽⁴⁾ For additional synthetic efforts towards peloruside A, see: (a) Paterson, I.; Di Francesco, M. E.; Kuhn, T. *Org. Lett.* **2003**, *5*, 599. (b) Ghosh, A. K.; Kim, J.-H. *Tetrahedron Lett.* **2003**, *44*, 3967. (c) Hoye, T. R.; Hu, M. 38th National Organic Chemistry Symposium, Bloomington, IN, June 8-12, 2003; Abstract A22. (d) Ghosh, A. K.; Kim, J.-H. *Tetrahedron Lett.* **2003**, *44*, 7659.

(8) Still, W. C.; Gennari, C. *Tetrahedron Lett.* **1983**, *24*, 4405.

```
(9) Mitsunobu, O. Synthesis 1981, 1.
```


The next stage of the plan was to build the 1,3-syn relationship between C13 and C15. Iodine-induced carbonate cyclization methodology originally published by Bartlett^{10a} and later improved by Smith^{10b} was first considered, Scheme 3. This is a particularly interesting substrate for this elec-

trophilic cyclization reaction because of the presence of two potential sites for reactivity. One could envision electrophilic activation of the more electron-rich trisubstituted olefin to provide a five-membered cyclic carbonate¹¹ or the sterically accessible terminal olefin to provide the desired sixmembered cyclic carbonate. In fact, treatment of the mixed carbonate with either I_2 or IBr, at low temperature, provided complex mixtures of products. However, the use of *N*iodosuccinimide proved to be selective for the formation of a single compound, carbonate **7**, in 92% yield. As expected, this material, upon exposure to basic methanol solution and protection, efficiently provided the *syn*-epoxy ether **8**. Generation of the polyacetate *syn*-diol would then be unveiled by epoxide ring opening with an acyl anion synthon.

The lithium anion of dithiane was used to fragment the epoxide and proceeded in 85% yield as shown in Scheme 3. Formation of C13-methyl ether was accomplished with

^{(5) (}a) Yoshimura, F.; Rivkin, A.; Gabarda, A. E.; Chou, T.-C.; Dong, H.; Sukenick, G.; Morel, F. F.; Taylor, R. E.; Danishefsky, S. J. *Angew. Chem.*, *Int. Ed.* **2003**, *42*, 2518. (b) Taylor, R. E.; Chen, Y.; Beatty, A.; Myles, D. C.; Zhou, Y. *J. Am. Chem. Soc*. **2003**, *125*, 26. (c) Taylor, R. E.; Zajicek, J. *J. Org. Chem.* **1999**, *64*, 7224.

⁽⁶⁾ Ihara, M.; Katsumata, A.; Setsu, F.; Tokunaga, Y.; Fukumoto, K. *J. Org. Chem.* **1996**, *61*, 677.

⁽⁷⁾ Dess, D. B.; Martin, J. C. *J. Org. Chem.* **1983**, *48*, 4155.

^{(10) (}a) Bartlett, P. A.; Meadows, J. D.; Brown, E. G.; Morimoto, A.; Jernstedt, K. K. *J. Org. Chem.* **¹⁹⁸²**, *⁴⁷*, 4013. (b) Duan, J. J-W.; Smith, A. B., III. *J. Org. Chem.* **1993**, *58*, 3703.

⁽¹¹⁾ Bongini, A.; Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. *J. Org. Chem.* **1982**, *47*, 4626.

methyl iodide in the presence of KOtBu in 78% yield. This was followed by hydrolysis of the dithiane to provide aldehyde **9**. A more efficient generation of the C13-methyl ether was accomplished by in situ alkylation of the intermediate alkoxide resulting from epoxide ring opening. As shown in Scheme 4, exposure of epoxide **8** to the lithiated

dithiane followed by the addition of an HMPA solution of dimethyl sulfate led to direct isolation of methyl ether **10** in 85% yield.

Mukaiyama aldol¹² reaction of the β -methoxy aldehyde **9** provided methyl ketone **11** in 91% yield as shown in Scheme 5. Mosher ester analysis¹³ of the major isomer, obtained in an 8:1 mixture, proved to have the desired absolute stereochemistry at C11 and thus a 1,3-anti stereochemical relationship between C11 and C13.

In summary, we have developed an efficient, enantioselective route to a protected C8-C19 fragment of peloruside A. The route is highlighted by a selective electrophilic cyclization reaction, a single-step epoxide ring-opening/ methyl ether formation, and an anti stereoselective Mukaiyama aldol reaction. Conversion of this advanced intermediate to peloruside A and analogues is currently underway in our laboratories, and results along these lines will be reported in due course.

Acknowledgment. This work was partially supported by the National Cancer Institute and National Institutes of Health (CA84599). R.E.T. thanks Eli Lilly for a Grantee Award. This work was done in collaboration with the Walther Cancer Research Institute of Indianapolis, Indiana.

Supporting Information Available: Full experimental and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0358814

^{(12) (}a) Reetz, M. T.; Kesseler, K.; Jung, A. *Tetrahedron Lett.* **1984**, *25*, 729. (b) Trieselmann, T.; Hoffmann, R. W. *Org. Lett.* **2000**, *2*, 1209. (c) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. *J. Am. Chem. Soc.* **1996**, *118*, 4322. (d) Willson, T. M.; Kocrenski, P.; Jarowicki, K.; Isaac, K.; Hitchcock, P. M.; Faller, A.; Campbell, S. F. *Tetrahedron* **1990**, *46*, 1767.

⁽¹³⁾ Dale, J. S.; Mosher, H. S. *J. Am. Chem. Soc*. **1973**, *95*, 512.